

Office of Nuclear Regulatory Research

NRC Research on Environmentally Assisted Cracking of Dry Storage Canisters

• Chloride deposition rates are dependent on distance from the coast, prevailing winds,

• Chloride deposition rates may beas high as 200 mg/m²/day at a distance of 1 km from the coast.

Introduction

- Commercial nuclear power plants refuel every 18 to 24 months.
- Spent nuclear fuel is removed from the reactor and placed in spent fuel pools for a minimum of 5 years.
- Independent Spent Fuel Storage Installations (ISFSIs), licensed under Title 10 of the Code of Federal Regulations Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related

Greater Than Class C Waste," are used when spent fuel pools have reached capacity.

Specimen Configurations

- Single U-bend: 304, 304L, 316L.
- Double U-bend: 304, 316L.
- Gas tungsten arc welded U-bends: 304/308, 304L/308L, 316L/316L.
- Specimens conform to ASTM standards.

U-bend specimens

Coastal Atmospheres

Deposition rates vary seasonally and annually.

High and low relative humidity periods can occur daily.

Type 304 U-bend specimen after testing for 16 weeks at 40 °C (104 °F)

chloride-containing solutions.

Test Results

• No corrosion or SCC ocured after dry salt deposition.

• SCC occurred on specimens tested at 40 °C (104 °F).

• SCC of 316L was slightly delayed compared to 304 and 304L.

– High relative humidity led to the formation of chloride-containing solutions.

– Lower relative humidity at the higher temperatures precluded the formation of

• No SCC occurred on specimens tested at 85 and 120 °C (185 and 248 °F).

Type 30L/308L U-bend specimen after testing for 32 weeks at 40 °C (104 °F)

Accelerated Atmospheric Testing

- Specimens placed in atmospheric test chamber and heated to 40, 85, and 120 °C (104, 185, and 248 ^OF).
- Dry salt deposited on specimens over a 2-week period to simulate up to 18 months of exposure in a coastal atmosphere.
- High and low humidity intervals are alternated to simulate daily fluctuations.
- Test specimens are examined after 4-, 16-, and 32-week exposures.

Intergranular cracks in a Type 304 U-bend specimen after testing for 16 weeks at 40 °C (104 °F)

Conclusions

- The formation of chloride-containing solutions at high relative humidity values can promote SCC in austenitic stainless steels.
- Higher temperatures and lower relative humidity prevent the formation of chloridecontaining solutions that can promote SCC.
- SCC of ISFSI storage casks appears to be limited to a narrow range of conditions and is more likely with increased operational time as the storage canister surface temperatures decrease.

Dry Storage Systems

- Typically, canisters are constructed using 304/304L/ 316/316L stainless steel (SS).
- SS canisters are housed within a concrete bunker or a steel and concrete outer cask with passive
- ISFSIs are licensed for 20 years.
- 3 ISFSI site License renewals (40 years) are completed.

Dry storage system designs

Issues

- Exposure to coastal atmospheres may result in deposition and accumulation of chloridecontaining salts which may induce chloride stress corrosion cracking (SCC).
- The Office of Nuclear Regulatory Research is evaluating the extended operation of existing ISFSIs and the potential for canister degradation.

Objective

 Conduct accelerated laboratory tests to determine the SCC susceptibility of austenitic type 304, 304L, and 316L stainless steels in coastal atmospheres.

U-bend specimens after dry salt deposition for 2 weeks

U-bend specimens tested at 40°C (104°F) for 4 weeks showing visible indications of corrosion

Knowledge for Today and Tomorrow